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1 Introduction

In this project, you will program your own quantum protocol! We start by a very simple protocol in
which Alice will simply send |0) to Bob over a channel (which we will call Eve). You will get to extend
this program to perform a simplified form of BB84 QKD yourself on simulated quantum internet
hardware!

To pass this project (and get the highest grade), it is sufficient to complete the specific exercises
at the end of this document. However, you may choose to enter your exercises, or any extension,
other protocol - in short, whatever you want! - into our competition! Several prizes are available with
the best individual project having the opportunity to be offered an internship in QuTech’s quantum
internet team this summer! We will also showcase the 10 best projects on our website.

Here, some useful links and then it’s time to get started!

e SimulaQron Website: [www.simulaqron.org]

e SimulaQron on Github: [https://github.com/SoftwareQuTech/SimulaQron]

e Example code for this competition in folder: [SimulaQron/examples/programming_q network|
e Arxiv Paper describing the inner workings of SimulaQron: [arxiv.org/abs/1712.08032]

e Google form for entering the competition [https://goo.gl/forms/KXBDXyX50Z06kv7a2]

1.1 Important dates and deadlines
e You can start submitting your project to edX in Week 4!
e Deadline for submitting your project to edX: 20 January 2019
e Deadline for peer-reviews: 30 January 2018

e Deadline for filling in the form for the competition: 20 January 2019

2 Installation instructions

To install SimulaQron, follow the instructions at Getting started. Further instructions on how to
configure the simulated network can be found in the section Configuring the simulated network. The
easiest way to program applications in SimulaQron is to use the Python library which is documented
at Python library.

If you previously used SimulaQron, for example in last years programming project, then checkout
section 7 to see some of the new features that has been added.
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3 Exercise instructions

In this exercise your task is to program protocols for the three nodes: Alice, Bob and Eve. Alice
and Bob want to generate a share private key such that they can communicate without someone
eavesdropping on their messages. Eve is very curious what Alice and Bob are talking about so she
tries to intercept their communication.

You will program a protocol for Alice and Bob such that Eve cannot intercept their key without
being detected. For simplicity, we will thereby simply assume that the communication from Alice
to Bob is “authenticated”, that is, Eve is not trying to impersonate Alice or Bob when classical
communication is sent. In reality, we do however simply make a direct classical network connection
from Alice to Bob that offers no such guarantees. If you want you can change that too!

Furthermore, you will also program an attack by Eve and hopefully see that Alice and Bob notices
this. More details on what your task is and which questions you should answer is given in the next
sections. Before getting started with the exercises, let us first describe the exercise and run an example.

3.1 The setup

As mentioned, there are three nodes in this setup: Alice, Bob and Eve.

Not necessarily important during this competition, but maybe useful to know, is that we will run
two servers on the nodes labelled Alice and Bob (localhost in the default configuration), that realize
the simulated quantum internet hardware and the CQC (classical quantum combiner) interface. See
Configuring the simulated network for how to setup a network with different nodes. In figure 1 there is
a schematic overview of how the communication is realized between the nodes. Firstly, the applications
in each node communicate with a CQC (classical-quantum-combiner) server that in turn talk to a
SimulaQron server. CQC is an interface between the classical control information in the network
and the hardware, here simulated by SimulaQron. The communication between the nodes needed to
simulate the quantum hardware is handled by the SimulaQron servers, denoted SimulaQron internal
communication in the figure. Note that such communication is needed since entanglement cannot be
simulated locally.

The only thing relevant for you doing the exercise, is that SimulaQron comes with a Python library
that handles all the communication between the application and the CQC server. In this library,
the object CQCConnection takes care of this communication from your application to the CQC
backend of SimulaQron. This allows your application to issue instructions to the simulated quantum
internet hardware, such as creating qubits, making entanglement, etc. Any operation applied to the
qubits in this Python library is automatically translated to a message sent to the CQC server, by the
CQCConnection . For performing quantum operations, you thus only need to understand the Python
CQC library supplied with SimulaQron.

In your application protocol, you may wish to send some classical information yourself. For example,
Alice might wish to tell Bob which basis she measured in in BB84 QKD. On top of the quantum
network there will thus be classical communication between the applications, denoted Application
communication in the figure. Such communication would also be present in a real implementation of
a quantum network. It is your responsibility as the application programmer to realize this classical
communication. One way to do this is via standard socket programming in Python.

However, for convenience we have included a built-in feature in the Python library that realizes this
functionality, which have been developed for ease of use for someone not familiar with a client/server
setup. This communication is also handled by the object CQCConnection . Let assume that Alice

wants to send a classical message to Bob and that Alice and Bob are instances of CQCConnection
at the respective nodes. For Alice to send a message to Bob, Alice will simply apply the method
Alice.sendClassical( ,msg) , where msg is the message she wish to send to Bob. The method
opens a socket connection to Bob, sends the message and the closes the connection again. Note that
if this method is never called, a socket connection is never opened. Bob receives the messages by
Bob.recvClassical() .


https://softwarequtech.github.io/SimulaQron/html/ConfNodes.html

We emphasise that to have classical communication between the applications, one is not forced to
use the built-in functionality realized by the CQCConnection . You can just as well setup your own
client /server communication using the method of your preference.
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Figure 1: A schematic overview of the communication in a quantum network simulated by Simu-
laQron. The simulation of the quantum hardware at each node is handled by the SimulaQron server.
Communication between the SimulaQron servers are needed to simulate the network, for example to
simulate entanglement. Opting for this method enables a distributed simulation, i.e. the computers
in the figure can be physically different computers. The CQC servers provide an interface between
the applications running on the network and the simulated hardware. Finally the applications can
communicate classically, as they would do in a real implementation of a quantum network.

3.2 A simple example

We have implemented a very simple example to help you get started that can be found in the folder
yourPath/SimulaQron/examples/programming_q_network . This simple scheme is definitely not
secure QKD and your task is to improve it. In the example, Alice will generate a random bit k which
will be used as a shared key between Alice and Bob. Alice encodes the key in a qubit by applying X*
to the qubit |0) and sends this qubit to Bob. In the example, Alice actually sends the qubit to Eve
(representing the channel), and Eve passes it on to Bob. Bob then measures the qubit and can recover
the key. Evidently, here Eve can also measure the qubit on the way to Bob to get the key. Importantly,
Eve can do this without disturbing the state of the qubit, by measuring in the standard basis.

Let us now look more in detail on the actual code. How to run the code is described in the next



section. In the folder yourPath/SimulaQron/examples/programming q_network there are a few

files but the ones containing the actual code is aliceTest.py , bobTest.py and eveTest.py .

3.2.1 Alice’s code

We will first look over the code for Alice. In the first part of the code Alice generates a random bit
and encodes this in a qubit, as seen below:

# Initialize the connection
with CQCConnection ( ) as Alice:

# Generate a key
k = random.randint (0, 1)

# Create a qubit
q = qubit(Alice)

# Encode the key in the qubit
if k == 1:
q.X0)

First an object called CQCConnection is initialized. This is done using a context such that allocated
qubits are released and connections are properly closed by the end, even if exceptions occur in the
program. The CQCConnection is responsible for all the communication between the node Alice and
SimulaQron and also to other nodes, as described in the previous section. Then a qubit object
is initialized, taking the CQCConnection as argument. When an operation is applied to a qubit ,
the CQCConnection is used to communicate with SimulaQron. Operations can be applied to the
qubit by for example writing q.X() , q.H() or ql.cnot(q2) , where q1 and q2 are different

qubit objects initialized with the same CQCConnection . More useful commands are given in Useful
commands.

Alice will now send the qubit to Bob. As discussed above, all the quantum communication will go
through Eve (since we cannot be sure it does not).

#Send qubit to Bob (via Eve)
Alice.sendQubit(q, )

To send a qubit the CQCConnection is called with the method sendQubit which takes the qubit as
argument and the name of the node to send it to.

In the last part of Alice’s code she encodes a message m = 0 by computing m + k (mod 2) and
sends this classical message to Bob. This is done by calling the method sendClassical which takes
as argument the node to send the message to and the message itself. The message can either be a
integer between 0 and 255 or a list of such integers. Finally the connections are closed by calling
Alice.close() .

# Encode and send a classical message m to Bob
m=0

enc=(m+k)¥%2

Alice.sendClassical( ,enc)

print ( .format(m))

3.2.2 Bob’s code

We will now take a look what happens on Bob’s side. Bob’s code is given as follows:

# Initialize the connection
with CQCConnection ( ) as Bob:
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# Receive qubit from Alice (via Eve)
q = Bob.recvQubit ()

# Retreive key
k = g.measure ()

# Receive classical encoded message from Alice
enc = Bob.recvClassical () [0]

# Calculate message
m = (enc + k) % 2

print( .format (m))

In the first part of the code a CQCConnection is again initialized. What is also done here is to execute
the command Bob.startClassicalServer() . This starts up a server which allows Bob to receive

classical messages from other nodes. Bob receives messages by calling the method recvClassical ,
which is done after he received and measured the qubit from Alice. In the end Bob decrypts the
message he received by using the key he measured and finally closes the connections.

3.2.3 Eve’s code

We already seen all commands used by Eve in the codes of Alice and Bob. Eve opens CQCConnection ,
receives a qubit, sends the qubit to Bob and closes the connections.

# Initialize the connection
with CQCConnection ( ) as Eve:

# Receive qubit from Alice
q = Eve.recvQubit ()

# Forward the qubit to Bob
Eve.sendQubit (q, )

3.3 Running the example

Now that we have seen what the code of Alice, Bob and Eve does it is time to run it and see what happens.
If this is not already up and running, start the background processes in a terminal, as described at Testing
a simple example. Navigate to the folder yourPath/SimulaQron/examples/programming_q_network .
To run the example, type:

sh run_example.sh

You will now see see output concerning the message sent from Alice to Bob. Hopefully the message
Bob received is the message Alice actually sent.

Now it is up to you to improve the code. A list of useful commands in the Python library can be
found at Useful commands.

4 Exercises
The goal of this exercise, will be to program some of the steps towards implementing QKD in simulation!

e Extend the program above to let Alice send a random BB84 state to Bob, and let Bob measure
it in a random basis.

e Extend the program above to let Alice send n random BB84 states to Bob.

e Extend your program to let Alice and Bob extract one bit of key &k € {0,1} :
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— Alice and Bob determine when they measured in the same basis. Let x denote Alice’s string
where they measure in the same basis.

— Alice now picks a simple extractor for 1 bit of key k: she randomly xors the bits in . That
is, k = Ext(z,r) =2 -r = Z;nzl xjr; mod 2, where m is the length of «.

— Alice sends the seed to Bob who uses it to obtain the key as well.

e Implement some “attack” on the channel (i.e. in Eve). Let Alice and Bob estimate the error rate
in the standard and Hadamard basis. What do you observe?

You can team up with others! In this case, please submit on edX for each participant and include
a group name in your submission to the competition (see below).

5 Guidelines for peer review
When you peer review other people’s submissions a few tips and guidelines:

e Completing the exercises above is sufficient for full grade. Very special projects can take part in
the competition and do not need to get extra or more credit in your peer review.

e When judging projects, please note that you are executing code written by other people on your
computer. If you execute the code to test it, please use due diligence to make sure that what you
are running safe to execute. We do not take any responsibility for running other people’s code
on your computer.

e Team projects should be judged the same as individual projects.

6 And beyond... the competition!

You may submit any protocol you wish to our competion: a beautiful solution to the exercises above,
extending them in any way you find useful, making the protocol device independent, implementing
any other quantum internet protocol,....

We will hand out several prizes in our competition and showcase the best projects online. See
the website [www.simulaqron.org] for details on the different prizes - including the best prize for an
individual project that can win an internship with us here at QuTech in the summer!

If you want to participate in the competition, we ask that - in addition to submitting your project
on edX - also fill out the following WebForm [https://goo.gl/forms/KXBDXyX50Z06kv7a2] to enter
in the competition. The competition is optional and not a requirement for doing the edX assignment.

Your submission should be a ZIP file which you will upload to edX containing the following:

1. Some information we will use on our website when showcasing the best and winning projects.
Please include this with your submission as a txt format in the folder INFO:
e Your real name: First Name, Last Name
e Name of group (if applicable)

Email address

Age (not relevant for prize selection)

Occupation (not relevant for prize selection)

School/University/Company (not relevant for prize selection)

Title of your project
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e Abstract describing your project (max. 200 words, will be used on the competition website
if you win, or make the top projects list)

e Your edX username
e 300x300 Picture of yourself/your group (will be used on website if you win, or make the top
projects list). Called yourname.PNG (PNG format only)

2. In addition to all the code making up your submission, please include the following files into a
folder called "DESCRIPTION”:
e A file called README.txt describing all files in your submission.
e A PDF describing the objective, summary and design overview of your submission (max. 2
pages)

e A script call run_submission.sh which will execute your project.

7 New features of SimulaQron since last year
Here is a list of the main new features of SimulaQron since last year:

e Different backends: One can now choose between three different backends for performing the
simulation: Using QuTip and mixed state, using Project Q and pure states and finally using
stabilizer formalism. When using the stabilizer formalism, one is forced to only apply Clifford
operations to the qubits. However, the runtime is drastically better as you can see in figure 2.
How one can choose the different backends is described at Settings.
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Figure 2: Runtimes for creating a GHZ-state of increasing size using the current three different backends
of SimulaQron.
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e CQCConnection context: The CQCConnection should now be initialized in a context as
follows:

# initialize the connection
with CQCConnection ( ) as Alice:

# Do some code here

The advantage of this is that qubits that are allocated within the context are automatically
released and connections are properly closed by the end of the scope, even if exceptions occur.
This avoids having to restart the simulation if you made a mistake in your code.

e Restricted topology: One can now start up a simulated network with a restricted topology,
i.e. a network where not all nodes are adjacent. This is described at Configuring the simulated
network.

e Noisy qubits: One can start up a network where the qubits are not perfect but expetience
noise. See Settings for more information.
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